Inhibition of gene amplification in telomerase deficient immortalized mouse embryonic fibroblasts.

نویسندگان

  • Paola Rebuzzini
  • Paola Martinelli
  • Maria Blasco
  • Elena Giulotto
  • Chiara Mondello
چکیده

Mutations in genes important for the preservation of genome stability can increase the frequency of gene amplification, a process relevant to tumor development. To investigate whether telomerase, the enzyme deputed to telomere maintenance, also plays a role in gene amplification, we studied the amplification of the carbamyl-P-synthetase, aspartate transcarbamilase, dihydro-orotase (CAD) gene in immortalized embryonic fibroblasts derived from telomerase knockout mice (mTERC(-/-)) of the first and of the sixth generation. As expected, in 9 out of 10 N-(phosphonacetyl)-L-aspartate (PALA) resistant clones derived from wild-type cells, CAD was amplified; in contrast, in none of the 30 PALA resistant clones isolated from the three mTERC(-/-) cell lines we could detect CAD amplification, indicating that, in the absence of telomerase activity, gene amplification is inhibited. The causal relationship between mTERC deficiency and lack of gene amplification was demonstrated by the restoration of CAD gene amplification in two of the three deficient cell lines transfected with mTERC. The lack of amplification in mTERC deficient cells could be related to a defect in the stabilization of the ends of the amplified chromosomes in the absence of telomerase, to a more general effect of telomerase in the regulation of gene expression, including genes involved in amplification, or to a possible interaction of the telomerase RNA with proteins involved in gene amplification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Telomere maintenance in telomerase-deficient mouse embryonic stem cells: characterization of an amplified telomeric DNA.

Telomere dynamics, chromosomal instability, and cellular viability were studied in serial passages of mouse embryonic stem (ES) cells in which the telomerase RNA (mTER) gene was deleted. These cells lack detectable telomerase activity, and their growth rate was reduced after more than 300 divisions and almost zero after 450 cell divisions. After this growth crisis, survivor cells with a rapid g...

متن کامل

Molecular characterization of human telomerase reverse transcriptase-immortalized human fibroblasts by gene expression profiling: activation of the epiregulin gene.

Reconstitution of telomerase activity by ectopic expression of telomerase reverse transcriptase (hTERT) results in an immortal phenotype in various types of normal human cells, including fibroblasts. Despite lack of transformation characteristics, it is unclear whether hTERT-immortalized cells are physiologically and biochemically the same as their normal counterparts. Here, we compared the gen...

متن کامل

Regulation of telomerase activity in immortal cell lines.

Telomerase is a ribonucleoprotein whose activity has been detected in germ line cells, immortal cells, and most cancer cells. Except in stem cells, which have a low level of telomerase activity, its activity is absent from normal somatic tissues. Understanding the regulation of telomerase activity is critical for the development of potential tools for the diagnosis and treatment of cancer. Usin...

متن کامل

Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...

متن کامل

Cellular Phenotype-Dependent and -Independent Effects of Vitamin C on the Renewal and Gene Expression of Mouse Embryonic Fibroblasts

Vitamin C has been shown to delay the cellular senescence and was considered a candidate for chemoprevention and cancer therapy. To understand the reported contrasting roles of vitamin C: growth-promoting in the primary cells and growth-inhibiting in cancer cells, primary mouse embryonic fibroblasts (MEF) and their isogenic spontaneously immortalized fibroblasts with unlimited cell division pot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Carcinogenesis

دوره 28 3  شماره 

صفحات  -

تاریخ انتشار 2007